Modulation of CFTR gating by permeant ions

نویسندگان

  • Han-I Yeh
  • Jiunn-Tyng Yeh
  • Tzyh-Chang Hwang
چکیده

Cystic fibrosis transmembrane conductance regulator (CFTR) is unique among ion channels in that after its phosphorylation by protein kinase A (PKA), its ATP-dependent gating violates microscopic reversibility caused by the intimate involvement of ATP hydrolysis in controlling channel closure. Recent studies suggest a gating model featuring an energetic coupling between opening and closing of the gate in CFTR's transmembrane domains and association and dissociation of its two nucleotide-binding domains (NBDs). We found that permeant ions such as nitrate can increase the open probability (Po) of wild-type (WT) CFTR by increasing the opening rate and decreasing the closing rate. Nearly identical effects were seen with a construct in which activity does not require phosphorylation of the regulatory domain, indicating that nitrate primarily affects ATP-dependent gating steps rather than PKA-dependent phosphorylation. Surprisingly, the effects of nitrate on CFTR gating are remarkably similar to those of VX-770 (N-(2,4-Di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide), a potent CFTR potentiator used in clinics. These include effects on single-channel kinetics of WT CFTR, deceleration of the nonhydrolytic closing rate, and potentiation of the Po of the disease-associated mutant G551D. In addition, both VX-770 and nitrate increased the activity of a CFTR construct lacking NBD2 (ΔNBD2), indicating that these gating effects are independent of NBD dimerization. Nonetheless, whereas VX-770 is equally effective when applied from either side of the membrane, nitrate potentiates gating mainly from the cytoplasmic side, implicating a common mechanism for gating modulation mediated through two separate sites of action.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalyst-like modulation of transition states for CFTR channel opening and closing: New stimulation strategy exploits nonequilibrium gating

Cystic fibrosis transmembrane conductance regulator (CFTR) is the chloride ion channel mutated in cystic fibrosis (CF) patients. It is an ATP-binding cassette protein, and its resulting cyclic nonequilibrium gating mechanism sets it apart from most other ion channels. The most common CF mutation (ΔF508) impairs folding of CFTR but also channel gating, reducing open probability (Po). This gating...

متن کامل

Allosteric Effects of Permeating Cations on Gating Currents during K+ Channel Deactivation

K+ channel gating currents are usually measured in the absence of permeating ions, when a common feature of channel closing is a rising phase of off-gating current and slow subsequent decay. Current models of gating invoke a concerted rearrangement of subunits just before the open state to explain this very slow charge return from opening potentials. We have measured gating currents from the vo...

متن کامل

Relationship between Pore Occupancy and Gating in BK Potassium Channels

Permeant ions can have significant effects on ion channel conformational changes. To further understand the relationship between ion occupancy and gating conformational changes, we have studied macroscopic and single-channel gating of BK potassium channels with different permeant monovalent cations. While the slopes of the conductance-voltage curve were reduced with respect to potassium for all...

متن کامل

Influence of Permeant Ions on Gating in Cyclic Nucleotide–gated Channels

Cyclic nucleotide-gated channels are key components in the transduction of visual and olfactory signals where their role is to respond to changes in the intracellular concentration of cyclic nucleotides. Although these channels poorly select between physiologically relevant monovalent cations, the gating by cyclic nucleotide is different in the presence of Na(+) or K(+) ions. This property was ...

متن کامل

Interaction between the Pore and a Fast Gate of the Cardiac Sodium Channel

Permeant ions affect a fast gating process observed in human cardiac sodium channels (Townsend, C., H.A. Hartmann, and R. Horn. 1997. J. Gen. Physiol. 110:11-21). Removal of extracellular permeant ions causes a reduction of open probability at positive membrane potentials. These results suggest an intimate relationship between the ion-conducting pore and the gates of the channel. We tested this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 145  شماره 

صفحات  -

تاریخ انتشار 2015